Implementing semiparametric density estimation
نویسندگان
چکیده
منابع مشابه
Implementing Semiparametric Density Estimation
A semiparametric estimate of a density may be formed via the convex combination of a parametric and a nonparametric density estimate. It is shown that the some trimming is often necessary to obtain an appropriate proportion of
متن کاملPenalized semiparametric density estimation
In this article we propose a penalized likelihood approach for the semiparametric density model with parametric and nonparametric components. An efficient iterative procedure is proposed for estimation. Approximate generalized maximum likelihood criterion from Bayesian point of view is derived for selecting the smoothing parameter. The finite sample performance of the proposed estimation approa...
متن کاملMerging Information for Semiparametric Density Estimation
KONSTANTINOS FOKIANOS Abstra t. The density ratio model specifies that the likelihood ratio of m 1 probability density functions with respect to the m’th is of known parametric form without reference to any parametric model. We study the semiparametric inference problem related to the density ratio model by appealing to the methodology of empirical likelihood. The combined data from all the sam...
متن کاملSemiparametric density estimation of shifts between curves
In this paper we address a problem related to curve alignment with a semiparametric framework, that is without any knowledge of the shape. This problem appears in many biological applications, in which we are interested in the estimation of the elapsed duration distribution between two signals, but wish to estimate it with a possibly low signal-noise ratio, and without any knowledge of the puls...
متن کاملSemiparametric multivariate density estimation for positive data using copulas
In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with parametric copulas to model the dependence. This semiparametric approach is robust both to the well-known boundary bias problem and the curse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 1990
ISSN: 0167-7152
DOI: 10.1016/0167-7152(90)90009-v